Disclaimer: The following material is being kept online for archival purposes.

Although accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers.

[an error occurred while processing this directive]

Site Map
Quest. & Ans.
For Teachers
Review (1)
Review (2)
Central link

[an error occurred while processing this directive]

#9.     Trapped Radiation

  (Files in red–history)


5a-1. EM Induction--1

5a-2. EM Induction--2

6. EM Waves

7. Plasma

7a. Fluorescent lamp

    7H. Langmuir, 1927

8. Positive Ions

    8H. Arrhenius, 1884

9. Magnetic Trapping

    9H. Poincaré, 1896

10. Trapped Motion

    10H. Einstein, 1910

10a. Particle Drift

 Because a particle is repelled as it moves into a region of stronger field, its advance along its guiding field line slows down. Its sliding velocity finally drops to zero and then reverses, causing the particle to bounce back or "mirror."

    Without this sort of "mirroring," ions and electrons would not be trapped in the Earth's magnetosphere, but would instead follow their guiding field lines into the atmosphere, where they would be absorbed and become lost. What usually happens instead, is that every time a trapped particle approaches Earth, it is reflected back. It is thus confined to the more distant section of the field line.

(3)   Drift around the Earth

    In addition to the rapid rotation ("gyration") around field lines and the back-and-forth "bounce" motion, trapped particles also undergo a slow "drift", by which they jump from one field line onto another one nearby, similar to the original one but slightly rotated around the Earth's magnetic axis. Viewed from the north pole, a positive ion will gradually rotate clockwise, a negative electron counter-clockwise.

(4)   The Ring Current

    Because positive ions and negative electrons drift in opposite directions (see drawing), that motion will create an electric current that circulates clockwise around the Earth when viewed from north. The current is aptly named the ring current.

    Note how different electric currents in space are from those encountered in everyday life! Currents we use at home--for light, to drive machinery or to generate heat--only flow if pushed by an electric pressure or voltage, against the resistance of the circuitry. The flow of such currents is in many ways similar to the flow of water through a pipe--water, too, will only flow if pressure is available, to help it overcome the friction inside the pipe. The flow of both water and electricity require a constant input of energy: once we click the switch and disconnect a house current from its source of voltage, it stops practically instantly.

    The flow of the ring current, and of many other currents in space, is quite different. It needs neither a driving voltage nor an energy input, but persists as long as its ions and electrons are trapped in the magnetic field. Many aspects of such "collision-free plasmas" are quite unlike what one might expect, and are often hard to reproduce in the laboratory: that is why the magnetosphere is probably our best "natural laboratory" for studying the processes of distant space.

(5)   Magnetic Storms

    The magnetic field produced by the ring current contributes (rather slightly) to the magnetic field observed at the surface of the Earth. There are however times when the population of trapped particles is greatly reinforced. The ring current then becomes stronger and its magnetic effect at Earth may grow 10-fold or more: that is known as a magnetic storm. The reinforcing particles are generally of moderate energy, but can be quite numerous. As discussed in a later section such events can interfere with the operation of communication satellites and cause other problems.

    If trapped orbits are so stable that their particles cannot be easily lost, those particles should not be able to easily enter them, either. How then can the radiation belt and ring current arise?

    The inner radiation belt, discovered by Explorers 1 and 3, turns out to be a slowly accumulating by-product of cosmic radiation, as explained in a later section.

    The ring current however (its energetic part is often called the "outer radiation belt"), owes its existence to magnetic storms, which can replenish it in the matter of hours. The process by which that happens is still incompletely understood, but it involves electric forces, combining with magnetic ones. Electric fields are able to push trapped particles earthward, and unlike the purely magnetic motion described earlier, an electric field can also energize them.

    The ultimate source of the energy and electric field must be the solar wind, and theories exist to explain how they are transmitted. Some are mentioned in further sections, but many details are still unclear and controversial.

Further Reading:

    A proper understanding of the motion of ions and magnetic fields requires a fair amount of mathematics. Texts on plasma physics generally cover the main principles, though some aspects important to the trapping of particles in the Earth's field may not be included.

    For a non-mathematical overview of some of the physical principles involved, especially the notion of adiabatic invariants, click here.

Questions from Users:
      ***     Radius of particle gyration
            ***     Deflection of a beam of Electrons in the Earth's Field

Next Stop: #9H.  Trapped Radiation--History

Last updated 25 November 2001
Re-formatted 3-11-2006

Above is background material for archival reference only.

NASA Logo, National Aeronautics and Space Administration
NASA Official: Adam Szabo

Curators: Robert Candey, Alex Young, Tamara Kovalick

NASA Privacy, Security, Notices